Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Nutrients ; 15(10)2023 May 20.
Article in English | MEDLINE | ID: covidwho-20244478

ABSTRACT

This study presents the first bibliometric evaluation and systematic analysis of publications related to mucosal immunity and commensal microbiota over the last two decades and summarizes the contribution of countries, institutions, and scholars in the study of this field. A total of 1423 articles related to mucosal immunity and commensal microbiota in vivo published in 532 journals by 7774 authors from 1771 institutions in 74 countries/regions were analyzed. The interaction between commensal microbiota in vivo and mucosal immunity is essential in regulating the immune response of the body, maintaining communication between different kinds of commensal microbiota and the host, and so on. Several hot spots in this field have been found to have received extensive attention in recent years, especially the effects of metabolites of key strains on mucosal immunity, the physiopathological phenomena of commensal microbiota in various sites including the intestine, and the relationship between COVID-19, mucosal immunity and microbiota. We hope that the full picture of the last 20 years in this research area provided in this study will serve to deliver necessary cutting-edge information to relevant researchers.


Subject(s)
COVID-19 , Microbiota , Humans , Immunity, Mucosal , Intestines , Bibliometrics
2.
J Vet Diagn Invest ; 35(3): 317-321, 2023 May.
Article in English | MEDLINE | ID: covidwho-20241750

ABSTRACT

Four turkeys from a commercial flock with acutely elevated mortality levels were submitted for postmortem examination and diagnostic workup. No clinical signs had been observed before death. On gross examination, hemorrhage and necrosis were present throughout the intestinal tracts, and the spleens were markedly enlarged and speckled. Microscopically, numerous, large basophilic-to-amphophilic intranuclear inclusion bodies were observed in mononuclear cells of the spleen and the lamina propria of the small intestine. In addition, there were lesions of diffuse villus blunting and necrosis of the small intestine, with large numbers of rod-shaped bacteria adhered to the epithelium and in the intestinal lumen. Hemorrhagic enteritis virus (HEV) infection was confirmed via PCR on the spleen. Clostridium perfringens was demonstrated in the small intestine by anaerobic culture and immunohistochemistry. The C. perfringens isolate was type F by PCR and, to our knowledge, necrotic enteritis in turkeys has not been described in association with C. perfringens type F infection.


Subject(s)
Clostridium Infections , Enteritis , Poultry Diseases , Animals , Enteritis/microbiology , Enteritis/veterinary , Poultry Diseases/microbiology , Intestines/microbiology , Clostridium perfringens , Necrosis/veterinary , Necrosis/pathology , Turkeys , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Chickens
3.
Viruses ; 15(4)2023 04 13.
Article in English | MEDLINE | ID: covidwho-2300977

ABSTRACT

Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Humans , Animals , Swine , Cell Line , Porcine epidemic diarrhea virus/genetics , Intestines , Epithelial Cells , Coronavirus Infections/veterinary , Diarrhea
4.
Vet Microbiol ; 280: 109718, 2023 May.
Article in English | MEDLINE | ID: covidwho-2306616

ABSTRACT

The interferon-delta family was first reported in domestic pigs and belongs to the type I interferon (IFN-I) family. The enteric viruses could cause diarrhea in newborn piglets with high morbidity and mortality. We researched the function of the porcine IFN-delta (PoIFN-δ) family in the porcine intestinal epithelial cells (IPEC-J2) cells infected with porcine epidemic diarrhea virus (PEDV). Our study found that all PoIFN-δs shared a typical IFN-I signature and could be divided into five branches in the phylogenic tree. Different strains of PEDV could induce typical IFN transitorily, and the virulent strain AH2012/12 had the strongest induction of porcine IFN-δ and IFN-alpha (PoIFN-α) in the early stage of infection. In addition, it was found that PoIFN-δ5/6/9/11 and PoIFN-δ1/2 were highly expressed in the intestine. PoIFN-δ5 had a better antiviral effect on PEDV compared to PoIFN-δ1 due to its higher induction of ISGs. PoIFN-δ1 and PoIFN-δ5 also activated JAK-STAT and IRS signaling. For other enteric viruses, transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus (PoRV), PoIFN-δ1 and PoIFN-δ5 both showed an excellent antiviral effect. Transcriptome analyses uncovered the differences in host responses to PoIFN-α and PoIFN-δ5 and revealed thousands of differentially expressed genes were mainly enriched in the inflammatory response, antigen processing and presentation, and other immune-related pathways. PoIFN-δ5 would be a potential antiviral drug, especially against porcine enteric viruses. These studies were the first to report the antiviral function against porcine enteric viruses and broaden the new acquaintances of this type of interferon though not novelly discovered.


Subject(s)
Coronavirus Infections , Enteroviruses, Porcine , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Transcriptome , Intestines , Epithelial Cells , Interferon-alpha/pharmacology , Gene Expression Profiling/veterinary , Coronavirus Infections/veterinary
5.
Front Cell Infect Microbiol ; 12: 1035711, 2022.
Article in English | MEDLINE | ID: covidwho-2288580

ABSTRACT

SARS-CoV-2 causes a spectrum of clinical symptoms from respiratory damage to gastrointestinal disorders. Intestinal infection of SARS-CoV-2 triggers immune response. However, the cellular mechanism that how SARS-CoV-2 initiates and induces intestinal immunity is not understood. Here, we exploited SARS-CoV-2-GFP/ΔN trVLP pseudo-virus system and demonstrated that RIG-I and DHX15 are required for sensing SARS-CoV-2 and inducing cellular immune response through MAVS signaling in intestinal epithelial cells (IECs) upon SARS-CoV-2 infection. NLRP6 also engages in the regulation of SARS-CoV-2 immunity by producing IL-18. Furthermore, primary cellular immune response provoked by SARS-CoV-2 in IECs further cascades activation of MAIT cells and produces cytotoxic cytokines including IFN-γ, granzyme B via an IL-18 dependent mechanism. These findings taken together unveil molecular basis of immune recognition in IECs in response to SARS-CoV-2, and provide insights that intestinal immune cross-talk with other immune cells triggers amplified immunity and probably contributes to immunopathogenesis of COVID-19.


Subject(s)
COVID-19 , Epithelial Cells , Immunity, Innate , Intestines , Humans , COVID-19/immunology , Interleukin-18 , SARS-CoV-2 , Signal Transduction , Epithelial Cells/immunology , Epithelial Cells/virology , Intestines/immunology , Intestines/virology
6.
PLoS Biol ; 21(1): e3001953, 2023 01.
Article in English | MEDLINE | ID: covidwho-2262622

ABSTRACT

Taste receptor cells are sensory specialists that detect chemicals in food and drink. An exciting new report in PLOS Biology suggests that some taste cells could also be involved in immune surveillance like counterparts in the intestine.


Subject(s)
Microbiota , Taste Buds , Taste , Taste Perception , Intestines
7.
Life Sci ; 319: 121506, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2260551

ABSTRACT

Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/genetics , SARS-CoV-2 , Intestines , Organoids , Intestinal Mucosa
8.
Front Immunol ; 14: 1115552, 2023.
Article in English | MEDLINE | ID: covidwho-2255878

ABSTRACT

Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn's disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.


Subject(s)
COVID-19 , Pancreatitis , Humans , Paneth Cells/physiology , Acute Disease , Intestines
9.
J Virol ; 97(3): e0009923, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2272661

ABSTRACT

The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-ßCoV, in the intestine of its natural host, Nathusius's Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-ßCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-ßCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-ßCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-ßCoV has a tropism for the intestinal epithelium of its natural host, Nathusius's Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission. IMPORTANCE Virtually all mammal species circulate coronaviruses. Most of these viruses will infect one host species; however, coronaviruses are known to include species that can infect multiple hosts, for example the well-known virus that caused a pandemic, SARS-CoV-2. Chiroptera (bats) include over 1,400 different species, which are expected to harbor a great variety of coronaviruses. However, we know very little about how any of these coronaviruses interact with their bat hosts; for example, we do not know their modes of transmissions, or which cells they infect. Thus, we have a limited understanding of coronavirus infections in this important host group. The significance of our study is that we learned that a bat coronavirus that occurs in a common bat species in Europe has a tropism for the intestines. This implies the fecal-oral route is a likely transmission route.


Subject(s)
COVID-19 , Chiroptera , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Phylogeny , SARS-CoV-2 , Intestines , Tropism , RNA
10.
Int J Rheum Dis ; 26(3): 591-598, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2251694

ABSTRACT

Systemic lupus erythematosus (SLE) has the potential to affect virtually every organ; however, gastrointestinal system manifestations are relatively rare compared to other autoimmune diseases such as systemic sclerosis and inflammatory bowel disease. A 29-year-old female patient attended to the emergency room with abdominal distention, acute onset abdominal pain and constipation. She had watery chronic diarrhea (4-5 times/d) and weight loss (6 kg, 12%) for 4 months. While there was increased intestinal wall thickness, air-liquid levels were shown on abdomen computed tomography scan. The patient underwent abdominal surgery due to diagnosis of ileus. Ileocecal resection was performed and pathologic evaluation revealed intestinal lymphangiectasia. Autoimmune serology was performed with the following resulats: anti-nuclear antibody 1/3200 with homogenous pattern, anti-DNA antibody and anti-Sm/ribonucleoprotein antibodies were positive in addition to low complement levels (C3: 0.28 [0.9-1.8 g/L], C4: 0.06 [0.1-0.4 g/L]) indicating diagnosis of SLE. Development of intestinal involvement in SLE (lupus enteritis) is mainly grouped into 3 headings such as mesenteric vasculitis, pseudo-obstruction, and protein-losing enteropathy. Although the pathogenesis of intestinal lymphangiectasia remains unknown, it has been reported that immune complex-mediated visceral vasculitis may result in bowel wall and mucosal edema. To our knowledge this is the first case report accompanying hyperinflammatory response in addition to intestinal lymphangiectasia in SLE. On the other hand, clinicians should be alert for other reasons for hyperinflammatory syndromes rather than COVID-19, even during the pandemic.


Subject(s)
COVID-19 , Giant Cell Arteritis , Granulomatosis with Polyangiitis , Lupus Erythematosus, Systemic , Protein-Losing Enteropathies , Female , Humans , Adult , Protein-Losing Enteropathies/etiology , COVID-19/complications , Lupus Erythematosus, Systemic/diagnosis , Intestines , Diarrhea , Granulomatosis with Polyangiitis/complications , Giant Cell Arteritis/complications
11.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2286000

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infection results in severe epidemic diarrhea and the death of suckling pigs. Although new knowledge about the pathogenesis of PEDV has been improved, alterations in metabolic processes and the functional regulators involved in PEDV infection with host cells remain largely unknow. To identify cellular metabolites and proteins related to PEDV pathogenesis, we synergistically investigated the metabolome and proteome profiles of PEDV-infected porcine intestinal epithelial cells by liquid chromatography tandem mass spectrometry and isobaric tags for relative and absolute quantification techniques. We identified 522 differential metabolites in positive and negative ion modes and 295 differentially expressed proteins after PEDV infection. Pathways of cysteine and methionine metabolism, glycine, serine and threonine metabolism, and mineral absorption were significantly enriched by differential metabolites and differentially expressed proteins. The betaine-homocysteine S-methyltransferase (BHMT) was indicated as a potential regulator involved in these metabolic processes. We then knocked down the BHMT gene and observed that down-expression of BHMT obviously decreased copy numbers of PEDV and virus titers (p < 0.01). Our findings provide new insights into the metabolic and proteomic profiles in PEDV-infected host cells and contribute to our further understanding of PEDV pathogenesis.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/metabolism , Proteomics/methods , Epithelial Cells/pathology , Intestines/pathology , Proteins/metabolism
12.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2241185

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a coronavirus causing diarrhea with high incidence in swine herds. Its persistent infection might lead to epithelial-mesenchymal transition (EMT) of swine intestinal epithelial cells, followed by subsequent infections of other pathogens. Enterococcus faecalis (E. faecalis) is a member of the enteric microorganisms and an opportunistic pathogen. There is no report of secondary E. faecalis infection to TGEV, even though they both target to the intestinal tracts. To investigate the interactions between TGEV and E. faecalis, we set up an in vitro infection model by the swine IPEC-J2 cells. Dynamic changes of cell traits, including EMT and cell motility, were evaluated through qPCR, Western blot, electronic microscopy, scratch test, Transwell migration test and invasion test, respectively. The adhesion and invasion tests of E. faecalis were taken to verify the impact of the preceding TGEV infection. The cell morphology and molecular marker evaluation results showed that the TGEV persistent infection induced EMT on IPEC-J2 cells; increased cellular motility and invasion potential were also observed. Spontaneously, the expression levels of fibronectin (FN) and the membrane protein integrin-α5, which are dominant bacterial receptors on IPEC-J2 cells, were upgraded. It indicated that the bacteria E. faecalis adhered to IPEC-J2 cells through the FN receptor, and then invaded the cells by binding with the integrin-α5, suggesting that both molecules were critical for the adhesion and invasion of E. faecalis to IPEC-J2 cells. Additionally, it appeared that E. faecalis alone might trigger certain EMT phenomena, implying a vicious circle might occur. Generally, bacterial and viral co-infections are frustrating yet common in both human and veterinary medicines, and our observations on enteric TGEV and E. faecalis interactions, especially the diversity of bacterial invasion strategies, might provide new insights into the mechanisms of E. faecalis pathogenicity.


Subject(s)
Bacterial Infections , Transmissible gastroenteritis virus , Animals , Humans , Swine , Enterococcus faecalis , Persistent Infection , Intestines , Epithelial Cells/microbiology , Integrins
13.
BMC Pediatr ; 22(1): 565, 2022 09 29.
Article in English | MEDLINE | ID: covidwho-2239544

ABSTRACT

BACKGROUND: A complication of elective cesarean section (CS) delivery is its interference with the normal intestinal colonization of the infant, affecting the immune and metabolic signaling in early life- a process that has been associated with long-term morbidity, such as allergy and diabetes. We evaluate, in CS-delivered infants, whether the normal intestinal microbiome and its early life development can be restored by immediate postnatal transfer of maternal fecal microbiota (FMT) to the newborn, and how this procedure influences the maturation of the immune system. METHODS: Sixty healthy mothers with planned elective CS are recruited and screened thoroughly for infections. A maternal fecal sample is taken prior to delivery and processed according to a transplantation protocol. After double blinded randomization, half of the newborns will receive a diluted aliquot of their own mother's stool orally administered in breast milk during the first feeding while the other half will be similarly treated with a placebo. The infants are clinically followed, and fecal samples are gathered weekly until the age of 4 weeks, then at the ages of 8 weeks, 3, 6, 12 and 24 months. The parents fill in questionnaires until the age of 24 months. Blood samples are taken at the age of 2-3 days and 3, 6, 12 and 24 months to assess development of major immune cell populations and plasma proteins throughout the first years of life. DISCUSSION: This is the first study to assess long-time effects on the intestinal microbiome and the development of immune system of a maternal fecal transplant given to term infants born by CS. TRIAL REGISTRATION: ClinicalTrials.gov NCT04173208 , registration date 21.11.2019.


Subject(s)
Gastrointestinal Microbiome , Cesarean Section/adverse effects , Child, Preschool , Feces , Female , Humans , Infant , Infant, Newborn , Intestines , Milk, Human , Pregnancy , Randomized Controlled Trials as Topic
14.
J Agric Food Chem ; 71(3): 1477-1487, 2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2185453

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.


Subject(s)
Transmissible gastroenteritis virus , Animals , Eugenol/pharmacology , Inflammasomes/genetics , Intestines , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Reactive Oxygen Species , Swine , Transmissible gastroenteritis virus/physiology , Phosphate-Binding Proteins/metabolism , Gasdermins/metabolism
15.
J Immunol ; 210(3): 271-282, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2201457

ABSTRACT

Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Transcriptome , Intestine, Small/pathology , Intestines/pathology , Sequence Analysis, RNA
16.
Cells ; 12(2)2023 01 09.
Article in English | MEDLINE | ID: covidwho-2199810

ABSTRACT

The novel coronavirus, SARS-CoV-2, rapidly spread worldwide, causing an ongoing global pandemic. While the respiratory system is the most common site of infection, a significant number of reported cases indicate gastrointestinal (GI) involvement. GI symptoms include anorexia, abdominal pain, nausea, vomiting, and diarrhea. Although the mechanisms of GI pathogenesis are still being examined, viral components isolated from stool samples of infected patients suggest a potential fecal-oral transmission route. In addition, viral RNA has been detected in blood samples of infected patients, making hematologic dissemination of the virus a proposed route for GI involvement. Angiotensin-converting enzyme 2 (ACE2) receptors serve as the cellular entry mechanism for the virus, and these receptors are particularly abundant throughout the GI tract, making the intestine, liver, and pancreas potential extrapulmonary sites for infection and reservoirs sites for developing mutations and new variants that contribute to the uncontrolled spread of the disease and resistance to treatments. This transmission mechanism and the dysregulation of the immune system play a significant role in the profound inflammatory and coagulative cascades that contribute to the increased severity and risk of death in several COVID-19 patients. This article reviews various potential mechanisms of gastrointestinal, liver, and pancreatic injury.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Liver , Intestines , Pancreas
17.
World J Gastroenterol ; 28(44): 6282-6293, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2163756

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen responsible for pandemic coronavirus disease 2019 (COVID-19). It is a highly contagious virus which primarily affects the respiratory tract, nevertheless, the lungs are not the only target organs of the virus. The intestinal tract could represent an additional tropism site for SARS-CoV-2. Several observations have collectively suggested that enteric infections can occur in COVID-19 patients. However, the detection of viral RNA in gastrointestinal (GI) tissue samples has not been adequately investigated and results are conflicting. AIM: To detect the presence of SARS-CoV-2 RNA in intestinal mucosa samples and to evaluate histological features. METHODS: The COVID-19 patients hospitalized at an Italian tertiary hospital from April 2020 to March 2021 were evaluated for enrollment in an observational, monocentric trial. The study population was composed of two groups of adult patients. In the first group (biopsy group, 30 patients), patients were eligible for inclusion if they had mild to moderate disease and if they agreed to have a rectal biopsy; in the second group (surgical specimen group, 6 patients), patients were eligible for inclusion if they underwent intestinal resection during index hospitalization. Fifty-nine intestinal mucosal samples were analyzed. RESULTS: Viral RNA was not detectable in any of the rectal biopsies performed (0/53). Histological examination showed no enterocyte damage, but slight edema of the lamina propria with mild inflammatory lymphoplasmacytic infiltration. There was no difference in inflammatory infiltrates in patients with and without GI symptoms. SARS-CoV-2 RNA was detected in fecal samples in 6 cases out of 14 cases examined (42.9%). In the surgical specimen group, all patients underwent emergency intestinal resection. Viral RNA was detected in 2 surgical specimens of the 6 examined, both of which were from patients with active neoplastic disease. Histological examination also pointed out abundant macrophages, granulocytes and plasma cells infiltrating the muscular layer and adipose tissue, and focal vasculitis. CONCLUSION: Mild-moderate COVID-19 may not be associated with rectal infection by the virus. More comprehensive autopsies or surgical specimens are needed to provide histological evidence of intestinal infection.


Subject(s)
COVID-19 , Adult , Humans , Intestines , Patients , RNA, Viral , SARS-CoV-2
18.
Immunobiology ; 227(6): 152288, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105124

ABSTRACT

The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.


Subject(s)
COVID-19 , Coinfection , Sepsis , Humans , COVID-19/diagnosis , SARS-CoV-2 , Interleukin-6 , Interleukin-10 , Permeability , Biomarkers , Intestines
19.
Gastroenterol Hepatol ; 43(8): 464-471, 2020 Oct.
Article in English, Spanish | MEDLINE | ID: covidwho-2095369

ABSTRACT

The SARS-CoV-2 pandemic is leading to high mortality and a global health crisis. The primary involvement is respiratory; however, the virus can also affect other organs, such as the gastrointestinal tract and liver. The most common symptoms are anorexia and diarrhea. In about half of the cases, viral RNA could be detected in the stool, which is another line of transmission and diagnosis. covid19 has a worse prognosis in patients with comorbidities, although there is not enough evidence in case of previous digestive diseases. Digestive endoscopies may give rise to aerosols, which make them techniques with a high risk of infection. Experts and scientific organizations worldwide have developed guidelines for preventive measures. The available evidence on gastrointestinal and hepatic involvement, the impact on patients with previous digestive diseases and operating guidelines for Endoscopy Units during the pandemic are reviewed.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/complications , Digestive System Diseases/etiology , Digestive System/virology , Pandemics , Pneumonia, Viral/complications , Aerosols , Angiotensin-Converting Enzyme 2 , Anorexia/etiology , Antiviral Agents/adverse effects , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Cohort Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Diarrhea/etiology , Digestive System Diseases/virology , Endoscopy, Digestive System/adverse effects , Feces/virology , Humans , Immunosuppressive Agents/adverse effects , Intestines/chemistry , Intestines/virology , Liver Diseases/etiology , Multicenter Studies as Topic , Pandemics/prevention & control , Peptidyl-Dipeptidase A/analysis , Peptidyl-Dipeptidase A/physiology , Personal Protective Equipment , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Receptors, Virus/analysis , Receptors, Virus/physiology , Risk , SARS-CoV-2 , Universal Precautions , COVID-19 Drug Treatment
20.
Medicina (Kaunas) ; 58(10)2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2066249

ABSTRACT

Fecal calprotectin (FC) is a very sensitive marker of inflammation of the gastrointestinal tract. Its clinical utility can be appreciated in both intestinal and extraintestinal diseases. Recent evidence suggests a link between intestinal inflammation and dermatological, rheumatic and neurological diseases. This review focuses on the role of FC in non-gastrointestinal disease, such as rheumatic, dermatologic, neurologic and last but not least SARS-CoV-2 infection.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , Leukocyte L1 Antigen Complex , COVID-19/complications , SARS-CoV-2 , Gastrointestinal Diseases/complications , Biomarkers , Intestines , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL